
18.03 Final Exam Review

This is only a brief summary of the topics in the course – be sure to study the notes as well!
You can find some old exams on OCW.

Please let me know if you notice errors here (johnl@math.mit.edu)
Review sheet subject to change, so check back for updated versions

Unit 1

The main topic so far has been first order ODEs: y′ = f(x, y). We’ve developed techniques to
qualitatively study their behavior by drawing a slope field and to numerically approximate
a solution using Euler’s method. We’ve also studied some particular classes of equations
where additional methods make it possible to find exact solutions.

General methods

(1.3.3, 1.3.6; sketch and identify fences, 6.14)
Given any old first order ODE, it’s usually not possible give an equation for the solu-

tion(s). But it’s still possible to say quite a bit about them, either by sketching an approxi-
mation of the graph, or approximating the values of a solution at many points.

The basic technique to deal with these things is drawing a direction field (also known as
a slope field), which gives a visual representation of solutions. Things to know:

1. Draw a direction field by sketching a few isoclines. Sketch integral curves after you’ve
drawn the field.

2. Be able to prove that a particular isocline is a fence (there are examples of this in
the first homework and the second recitation notes). Identify a funnel and explain its
implications for the asymptotics of solutions.

3. A separatrix is a solution such that nearby solutions have dramatically different be-
havior.

There is one other tool we have that works for any first-order equation (rather than
just those having some specific form): Euler’s method. This gives a way to numerically
approximate the solution to an equation. The basic mechanism is to start with a point
(x0, y0). Increase x by the step size h should cause an increase in y of about y′(x0) · h =
f(x0, y0) · h. In general we move from (xk, yk) to (xk+1, yk+1) using the rule

xk+1 = xk + h, yk+1 = yk + f(xk, yk) · h.

Things will be easier to keep track of if you put all these numbers in a table. It’s probably
worth doing an example for practice.
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Some classes of equations

(separable: 1.4.16, 1.4.34; autonomous: 1.7.5, 1.7.10)
The easiest case is when you have a separable equation: this is when y′ = f(x)g(y), and

so you can write dy/g(y) = f(x) dx, integrate both sides, and then solve for y to get the
general solution.

Another important class of equations is the autonomous equations, in which f(x, y) =
g(y) doesn’t depend on x at all: this means that the change in y only depends on its current
value. These are separable, but often the integrals involved in solving them are messy at
best. On the other hand, it’s easy to give simple qualitative descriptions of the solutions.

The equilibria are the values of y for which g(y) = 0, i.e. f ′(x, y) = 0. A solution will
generally increase or decrease until it reaches one of the equilibria, or else increase or decrease
without limit.

The way to see what happens is to draw the phase line. This shows in which ranges
of y the solution will increase or decrease, and thus which equilibrium it will tend towards.
When drawing the phase line, it can help to draw a plot of g(y) against y; then you can see
for which ranges of y the derivative is either positive or negative. It also lets you identity
the stable, unstable, and semistable equilibria: know how to identify and interpret these!

We have two special classes of autonomous equations which model some kind of popula-
tion growth.

• Natural growth: y′ = k0y.

• Logistic growth: y′ = k0(1−(y/p))y. The growth will slow as y approaches the carrying
capacity p, since this means y′ goes to 0. It is possible to give an exact solution, but
often the qualitative behavior is all we care about.

If an equation involves a parameter, say a, the equilibria will depend on the value of a
(you solve y′ = 0 for y, and the answers will depend on a). A bifurcation diagram illustrates
this dependence; draw a plane with a on the horizontal axis, y on the vertical, and graph
the equilibrium values as functions of a (there will be more than one for each a value).

First order linear equations

(1.7.5, 1.7.10)
These are equations that only depend on x and x′, and do so in a particularly simple

way: they can be written in standard form r(t)x′(t) + p(t)x(t) = q(t). Divide through by r
to get reduced standand linear form x′(t) + p(t)x(t) = q(t). This is a class of equations for
which we can often find exact solutions.

Three important examples are computing compound interest with continuous depositing,
simple RC circuits, and Newtonian cooling. You can read how to set these up in lecture notes
4 and 5.

There’s a standard procedure for solving a first-order linear equation:

1. Solve the associated homogeneous equation x′(t) + p(t)x(t) = 0 (ignore q, basically).
This is a separable equation: solve it, and you get xh = Ce−

R
p(t) dt.

2



2. Once you solve the homogeneous equation you can modify it to find the solution to the
inhomogeneous form. There are two approaches here, which are more or less equivalent.

(a) Method one (variation of parameters): assume the general solution is uxh, where
xh is some solution to the homogeneous equation. Plugging everything in gives
u =

∫
xh(t)

−1q(t) dt. Compute that integral, and then uxh is your solution (details
in notes #5).

(b) Method two (integrating factor; you’re going to get the same answer either way).
Multiply through be 1/xh. Recognize the thing on the left as a derivative d

dt
(something(t)·

y), integrate both sides, and then solve for y.

Sometimes the language of systems and signals clarifies exactly what’s going on in these
situations. Think of the function q(t) as an input, upon which the solution y(t) somehow
depends (it’s the output). Initial conditions should be considered too. There’s a sort of
diagram you can draw – see lecture notes 4.

Complex numbers

Complex numbers have the form a + bi, where i =
√
−1. a is called the real part, b the

imaginary part. You can multiply (a + bi) · (c + di) by using “foil” and remembering that
i2 = −1. The conjugate of z = a+ bi is the complex number z̄ = a− bi.

It’s often useful to express complex numbers in polar coordinates. This works just like
converting between polar and rectangular coordinates did in 18.02. r is called the modulus (or
magnitute), and θ’s called the argument). The key fact here is Euler’s formula, which defines
how to raise e to a complex power: eiθ = cos θ+i sin θ, so ea+bi = ea(cos b+i sin b). Note that
this need not be purely real or purely imaginary, even if θ is. Multiplying in polar coordinates
is simple, as the moduli multiply and the arguments add: (r1e

iθ1) · (r2eiθ2) = r1r2e
i(θ1+θ2).

This observation also lets you find the nth roots of complex numbers. You can use this to give
slick proofs of pretty much every trig identity. There’s an example on the second problem
set.

Unit 2

Sinusoidal functions

A sinusoidal function is a function of the form f(t) = A cos((2π/P )(t − t0)). These are
functions that look like cosine but have been scaled vertically and horizontally, and translated
horizontally. Here A is the amplitude, the height of the maxima, P is the period, the time
in which it repeats, and t0 is the time lag, the time of the first maximum. Other constants
which derive from these are the frequency ν = 1/P , angular frequency ω = 2π/P , and phase
lag φ = ωt0. We’ll usually write our sinusoids in the form A cos(ωt − φ), the “standard
form”.

Given the equation for a sinusoid, you should be able to draw a graph corresponding
to the values of the parameters (or, given a graph, find the parameters). Be comfortable
computing phase lag from time lag and ω, etc.
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Given a sinusoid A cos(ωt−φ), you can use the angle sum formula to write it as a cos(ωt)+
b sin(ωt). Here A =

√
a2 + b2, a = A cosφ, b = A sinφ. Using these equations you can go

back and forth between the two forms. If you forget the equations, you can use the angle
sum formula to derive them.

One trick we can do with sinusoidal functions: to integrate e2t cos t, write it as Re e(2+i)t,
integrate that, and then take the real part. Lecture notes 8 works this out in some detail.

Linear second order equations

The main equations we studied in this unit were of the form mx′′ + bx′ + kx = Fext. This
describes the movement of a mass on a spring, with a dashpot, subject to an external force.
Exactly what Fext will be and how it’s related to the physical input is worth thinking about
– see notes 13.

The solution will end up being something like c1e
−2t+c2e

−3t+ 1
3
e−t cos(2t) with two terms

with constants in front of them (this is the general solution to the homogeneous equation),
and one term without (that’s the particular solution). If you’re given initial conditions, you
can use them to solve for c1 and c2. The basic procedure is this:

• Solve the homogeneous equation.

• Find a single solution to the inhomogeneous equation (i.e. a particular solution)

Add the two together, and you get a solution to the whole thing, by linearity. Sometimes
the solutions to the homogeneous equation will all go to 0 as t goes to infinity. In this case
every solution converges to a particular solution, called the steady state.

Solving the homogeneous equation

If we’re looking at mx′′ + bx′ + kx = q(t), first solve the associated homogeneous equation,
namely mx′′ + bx′ + kx = 0. The thing to do here is look at the characteristic polynomial
p(s) = ms2 + bs + k. Find its zeroes (use the quadratic formula, or complete the square).
Three things can happen, and I think it’s worth remembering the general solution in each
case.

• Two real roots r1 and r2. In this case the general solution to the homogeneous equation
is c1e

r1t + c2e
r2t. This case is called overdamped.

• Two complex roots a+bi and a−bi (you’ll always get two conjugate complex numbers).
In this case the general solution is c1e

at cos bt + c2e
at sin bt. This is the underdamped

case.

• A single real root r (with multiplicity two). This is the critically damped case, and the
general solution is c1e

rt + c2te
rt.

To this we will add a particular solution to get a solution of our equation. Remember that
except in the underdamped case, a solution can only cross 0 once, or not at all. In the
underdamped case, it will cross infinitely many times.
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Finding a particular solution

How to find a particular solution depends on the form of the equation q(t).

1. q(t) = Aert. In this case, we’d guess that the solution should be cert for some constant
c, plug that in for x(t), and solve for c. A shortcut is the exponential response formula,
which tells you that c = A/p(t), and a particular solution is given by Aert/p(r).

This isn’t going to work if p(r) = 0. That’s what happens when cert is already a
solution of the homogeneous equation, so no choice of c can save you. This is an
example of resonance. You need to use ctert as your guess is this case, and some twist
on the exponential response formula says that the right value is c = A/p′(r), and the
particular solution is Atert/p′(r). The gain will be maximized at ωr =

√
k/m, the

natural frequency. If p′(r) = 0 too, you’ll have to use t2ert. . . . For what to do then, I
leave you to consult the lecture notes.

2. q(t) = c cos(ωt) (or sin(ωt)). Here we use complex replacement and the exponential
response formula (the combination of which is the sinusoidal response method).

First make a complex replacement: look at the complex equation mz′′+bz′+kz = Aeiωt.
The real part of a solution to this will solve the original equation. This we know how
to solve using the exponential response formula. It’s solved by Aeiωt/p(iω). Now we
want to find the real part of this, which gives our solution. There are two options:
multiply by the conjugate of p(iω), expand eiωt using Euler’s formula, and take the
real part; or, write A/p(iω) in polar coordinates and then multiply by eiωt. You’ll get
the same answer either way.

The complex gain is zp/ycx, the factor by which the input is multiplied to get the output.
Here zp is the complex particular solution you get, and ycx is the complexification of
the input signal. Note that this definition of gain is dependent on what we regard as
the “input signal” – ycx isn’t necessarily just whatever appears on the right side of the
equation. See [5] of lecture notes 16 for an example of this; the “b” on the right isn’t
regarded as part of ycx. The complex gain is denoted H(ω) The magnitude of H(ω)
is the gain h , and the negative of the argument of H(ω) is the phase lag φ, so that
H(ω) = he−iφ.

3. q(t) = at2 +bt+c, or some other polynomial. Here you should guess that the particular
solution is also going to be a polynomial. Plug in At2 + Bt + C to the equation, and
then solve for the values of A,B,C that will actually make it a solution. This is the
method of undetermined coefficients.

4. q(t) = p(t)ert, where p(t) is a polynomial. Here the method to use is variation of
parameters. If you were to plug in x(t) = u(t)ert, then mx′′ + bx′ + kx is going to
be something times ert. So, for a judicious choice of u, we ought to get a particular
solution. To find the u that actually works, plug in x(t) = u(t)ert to mx′′ + bx′ + kx
and expand x′′ and x′ using the product rule. The result will be a differential equation
for u, which is hopefully easier to solve. Solve it, and then your particular solution is
xp(t) = u(t)ert.
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This method is applicable to cases where you have something times ert on the right
side. You did an example on the homework where it was ert cos t, which can also be
done by complex replacement + ERF.

5. q(t) is of one of the above types, but has a time shift (e.g. q(t) = cos(t− π/8)). Here
the thing to do is use the time-shifting principle: find a solution with q(t) = cos(t), and
then substitute in t−π/8 everywhere you see a t. This is a very useful thing for sinusoids
that aren’t just cosine: if you want to solve mx′′+ bx′+ kx = cos(ωt−φ), you can just
solve with cos(ωt) on the right, then time shift (write cos(ωt − φ) = cos(ω(t − t0))).
Every sinusoid can be written in the previous form, so this works very generally.

6. q(t) is a sum of functions of several of the types above (e.g. q(t) = cos(2t)−mg). If you
can find a solution for each one of the pieces that appears on the right, then the sum
of all these things is a particular solution of the entire equation (this is the principle
of superposition).

Other stuff

Keep in mind the notation of operators. D denotes differentiation with respect to t. If p(s)
is a polynomial, say s2 + 3s+ 2, then p(D) is an operator, with p(D)x = x′′ + 3x′ + 2x.

Much of what we’ve said here works for higher-order equatinos as well:

anx
(n) + an−1x

(n−1) + a1x
′ + a0x = q(t).

If the coefficients are constants, we can use the same approach: write down the characteristic
polynomial. The exponential response formula and other methods above will carry over to
the higher-order case as well.

Another trick is reduction of order. If you have an equation that only involves derivatives
of x (as opposed to x itself), you can set u = x′ and you’ll get a differential equation for u
of smaller order, which ought to be easier to solve.

Be ready for questions about how the gain and phase lag will depend on ω if there is a
sinusoidal input. There are examples in notes 16 and recitation notes 11.

Unit 3

Fourier series

The functions cos(nt) and sin(nt) have period 2π/n. Fourier series let us write any reasonable
function with period 2π as a (possibly infinite) combination of these basic functions:

f(t) =
a0

2
+ a1 cos(t) + a2 cos(2t) + · · ·+ b1 sin(t) + b2 sin(2t) + · · ·

Here “reasonable” (not a technical term) means f and its derivative are both piecewise
continuous and averaged (the latter of these meaning that at each discontinuity, the function
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has f(a) = (f(a+)− f(a−))/2). The coefficients can be computed using the integrals

an =
1

π

∫ π

−π
f(t) cos(nt) dt

bn =
1

π

∫ π

−π
f(t) sin(nt) dt

This all works for functions of period other than 2π too. If the period is P = 2L, the
series will have terms an cos(n(π/L)t) and bn sin(n(π/L)t), and there are similar integrals to
compute the coefficients.

Actually computing any of these is integrals is a pain, especially on an hour exam. So
make as many simplifying observations as you can. If f is odd, then its Fourier expansion
will have only sin’s in it (an = 0). If f is even, the expansion has only cos’s (bn = 0).
The other important strategy is to try to relate our function to one for which the series is
already known, by using translations, horizontal rescalings, differentiation, etc. If you know
the Fourier series for the original function, you can just perform each of the operations on
the Fourier series. The trickiest is dealing with translations: to get the series for f(t− π/6)
from that for f(t), just substitute to get terms like 3 cos(4(t − π/3)). A term like that
isn’t allowed in a Fourier series, but you can expand using the sum identity for cosine:
3 cos(4t) cos(4π/3)− 3 sin(4t) sin(4π/3), and this is allowed. Expand all the terms that way
and you get the Fourier series.

Just about the only function we actually computed the series for was the square wave,
which is odd, of period 2π, and takes the value 1 between 0 and π (this data is enough to
determine it completely).

Sq(t) =
4

π

(
sin(t) +

1

3
sin(3t) +

1

5
sin(5t) + · · ·

)
Fourier series turn out to be very useful for differential equations. Here’s an “example”. If

you have a spring system with any periodic external force q(t), it’s described by the equation
mx′′ + bx′ + kx = q(t). Expand q(t) as a Fourier series:

mx′′ + bx′ + kx =
a0

2
+ a1 cos(t) + a2 cos(2t) + · · ·+ b1 sin(t) + b2 sin(2t) + · · · .

The terms on the right can be handled one by one: for example mx′′ + bx′ + kx = b2 sin(2t)
is something you know how to solve using the sinusoidal response method. Find the solution
for each term in the Fourier series for q(t) and add them all up. By superposition, this gives
a solution to our original equation.

Something to watch out for: one of the terms in the Fourier series might be at the
resonant frequency, so you need to pay special attention when handling that term. In this
case the solution you find won’t be periodic – you’ll end up with a term like t sin(ωt) for
some value of ω.

Delta functions etc.

We think of the delta function as a function that has very large values when t is very close to
0. It’s so large, in fact, that

∫∞
−∞ δ(t) dt = 1. The Heaviside step function u(t) is the function
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which is 0 for t < 0 and 1 for t > 0. Its derivative is the delta function (really all of this
should be interpreted in terms of time scales, for which see notes 23). A regular function is
piecewise smooth, i.e. it’s broken into a bunch of pieces and infinitely differentiable on each of
them. A singularity function is a sum of delta functions. A generalized function is the sum of
a regular function and a singularity function. To take the derivative of a piecewise function,
here’s what to do: take the usual derivative of the function of the function everywhere except
where the function jumps. If the function jumps by some amount J = f(a+) − f(a−) at
t = a, then throw in a J · δ(t − a). To multiply a delta function by a continuous function,
don’t forget the rule f(t) · δ(t− a) = f(a) · δ(t− a). With all these definitions, the product
rule and fundamental theorem of calculus both work for generalized functions.

The delta function and unit step function are both useful in setting up differential equa-
tions to describe real-life situations. Here are the two basic examples. x′−kx = q(t) describes
a bank account, paying interest at rate k, and such that money is deposited at a rate of q(t).
If q(t) = a · u(t) is the step function, this means you deposit no money until t = 0, and
then deposit at a constant rate of 1 for t > 0. If q(t) = a · δ(t), this means we deposit no
money for t < 0, at t = 0 we make a lump-sum deposit of a, and then never deposit money
again. In particular the balance is discontinuous and jumps by a at t = 0. The second order
example is a driven mass-spring system mx′′ + bx′ + kx = Fext(t). If Fext(t) = u(t), there’s
no force until t = 0, at which time a force of 1 kicks in. If Fext(t) = δ(t), this means the
mass sits until t = 0, at which time it is struck very hard. The derivative x′(0) jumps by
1/m at t = 0, but x is continuous at 0. This is explained in lectures notes 24 (or, in a longer
and more rambling form, in a post I made on Piazza). The following table summarizes the
initial conditions you need to use.

First order Second order
Step Impulse Step Impulse

Equation: cx′ + kx = u(t) cx′ + kx = δ(t) mx′′ + bx′ + kx = u(t) mx′′ + bx′ + kx = δ(t)
For t > 0 solve: cx′ + kx = 1 cx′ + kx = 0 mx′′ + bx′ + kx = 1 mx′′ + bx′ + kx = 0
With conds: x(0) = 0 x(0) = 1/c x(0) = 0, x′(0) = 0 x(0) = 0, x′(0) = 1/m

Don’t forget to multiply by u(t) at the end!

The unit step response for an operator p(D) is the function x(t) that satsifies p(D)x =
u(t), starting with initial conditions x(n)(0−) = 0. The unit step response is a solution to
p(D)x = 1, with all initial conditions 0 (for first order, this means x(t) = 0, for second order,
x(t) = x′(t) = 0). You know how to solve p(D)x = 1 from last unit: solve the homogeneous
equation, find a particular solution, add them). Don’t forget to multiply your solution by
u(t), since you want it to be 0 for t < 0.

The unit impulse response for an operator p(D) solves p(D)x = δ(t). For t > 0 this
is a solution to the homogeneous equation p(D)x = 0 with initial conditions all 0, except
the highest-order derivative has x(n)(0) = 1/an, where an is the leading coefficient of the
operator (for the bank example: x(t) = 1; for the spring example: x(t) = 0, x′(t) = 1/m).
Often the unit impulse response is denoted w(t). You can also find the step and impulse
response using Laplace transform. More on this later.
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Given two functions f(t) and g(t), the convolution is defined by the integral

f(t) ∗ g(t) =

∫ t

0

f(τ)g(t− τ) dτ.

This is another function of t. The official 18.03 real-life example of convolution is something
about farm runoff, for which I refer you to lecture notes 25. Key fact: convolution is
commutative, so f(t) ∗ g(t) = g(t) ∗ f(t). The reason we care about this is that if w(t) is the
weight function above, then a solution to p(D)x = q(t) with rest initial conditions is given
by q(t) ∗w(t). This means that if you know the weight function for an operator, you can get
a solution to p(D)x = q(t) by computing the convolution integral (however in most cases
doing this integral will be harder than just solving the equation directly). Keep in mind that
if are you trying to convolve two functions, it’s often good to take “g” to be the simpler one,
so you’ll have fewer τ terms involved in the integral.

Laplace transform

Given a function f(t) (satisfying some conditions that I won’t worry about), the Laplace
transform is a function F (s), defined by L[f ] = F (s) =

∫∞
0− f(t)e−st dt. It satisfies a bunch

of useful relations. No need to memorize these: you’ll get a table on the exam.

Linearity L[a f(t) + b g(t)] = aF (s) + bG(s) L[1] = 1
s

s-shift L[ertf(t)] = F (s− r) L[δ(t− a)] = e−a

t-shift L[f(t− a)] = e−asF (s) L[eat] = 1/(s− a)
s-derivative L[tf(t)] = −F ′(s) L[tn] = n!/sn+1

t-derivative L[f ′(t)] = s F (s)− f(0−) L[cos(ωt)] = s/(s2 + ω2)
L[f ′′(t)] = s2F (s)− s f(0−)− f ′(0−) L[sin(ωt)] = ω/(s2 + ω2)

Convolution L[f(t) ∗ g(t)] = F (s)G(s) L[t cos(ωt)] = 2ωs/(s2 + ω2)2

Weight fct L[w(t)] = W (s) L[t sin(ωt)] = (s2 − ω2)/(s2 + ω2)2

The significance of this is that given a differential equation, you can hit both sides with
the Laplace transform and it turns into an algebraic problem. Note that taking the transform
of f ′ and f ′′ is where the initial conditions come into play: the transform of derivatives of f
depends on f(0−) f ′(0−), . . . by the t-derivative rule. (NB: pre-initial conditions, as opposed
to the post-initial in the earlier method for impulse response) You can then solve for the
Laplace transform F (s) of the solution, and then try to find a function having the given
transform. There is of course no free lunch, and if you use this method the hard part is
typically finding the inverse transform of F (s).

To find the impulse response p(D)w = δ(t), taking the transform yields p(s)W (s) = 1, so
p(s) = 1/W (s). This W (s) is called the transfer function. If you know the transfer function,
you can find the weight function by taking inverse transform. Laplace transform also lets
you find the operator given the weight function: compute the transform of w(t), find its
reciprocal 1/W (s) = p(s), and the result is the characteristic function of the operator!

Often it’s useful to draw the “pole diagram” of W (s), or more generally any Laplace
transform F (s). This just means to draw the complex plane and put a dot at every point
where W (s) is infinite (usually W (s) is a rational function, so the dots go at the zeroes of
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the polynomials in the denominator). The pole diagram of a function F (s) tells you quite
a bit about the behavior of f(t). Very roughly, a pole at a + bi tells you your function has
a term that acts like eat cos(bt). For large t, all of these summands will be negligible except
the one for which the real part a is largest, since the other exponentials decay more quickly.
So the long term behavior is governed by by pole that is the rightmost in the diagram. If all
poles have negative real part, f(t) decays to 0, . . . .

Linear Algebra

I won’t give a detailed treatment of all our linear algebra. Here’s the important vocabulary.
The source of much confusion is that many of these gadgets can be interpreted both purely
algebraically, or as describing something geometric, and we often switch between the two
viewpoints.

Term Algebraic Geometric

Vector
(
a
b
c

)
Point in R3

Matrix
(
a b c
d e f
g h i

)
Linear transformation

Invertible There exists a matrix A−1 with
AA−1 = I

some other linear transformation
reverses it (unlike e.g. projection
to x-axis)

Matrix . vector Matrix mult. Image of v under linear transfor-
mation

Matrix mult. Know how to do it! Composition of linear transfor-
mations

Subspace Set of vectors closed under addi-
ton

Line in a plane/plane in space etc.

Span All vectors av1 + bv2 Plane spanned by v1 and v2

Determinant Sum of downward diags - sum of
upward (for dim = 2, 3 only!)

Volume of parallelpiped spanned
by vectors

Linear indep. av1 + bv2 + cv3 = 0 implies a =
b = c = 0

No two vectors parallel, no three
in one plane

Linear dep. Some linear combo is 0 Three coplanar vectors, or similar
Basis Set of vects such that any vector

can be expressed as combo av1 +
bv2 + cv3

Two non-parallel vectors in a
plane, etc.

Char. poly det(A − λI) = λ2 − (trA)λ +
(det)A

Not as nice – Google it if curious

Eigenvalue Zeroes of char poly Scaling factor for eigenvector
Eigenvector Vector with A~v = λ~v Vector that points in same direc-

tion after linear trans

Many of these are related. To check if three vectors in R3 are linearly independent, put
the three in a matrix, and compute the determinant. It’s 0 if and only if the vectors are

10



linearly dependent. If one of your vectors depends on a parameter a, you can find the a
which makes the vectors dependent by setting the determinant equal to 0 and solving. A set
of three vectors in R3 forms a basis if and only if they are linearly independent.

The eigenvalues of a matrix M are exactly the zeroes of the characteristic polynomial
pM(t). To find an eigenvector for an eigenvalue λ, write down the matrix A − λI, and find
a ~v which is sent to 0 by this matrix. In the 2× 2 case, you can just swap the entries of the
top row of A− λI and add a minus sign to one of them. Also worth rememberingis that the
sum of the eigenvalues is equal to the trace (sum of diagonal entries), and the product of
the eigenvalues is the determinant.

We’re interested in differential equations of the form u(t) = Au(t), where u(t) =
(x(t), y(t)) and A is a matrix (usually 2 × 2 in this course, lest the algebra get out of
hand). This means the derivatives of x(t) and y(t) depend on both x(t) and y(t). If you’re
so inclined, you can turn a second-order homogeneous linear equation ẍ + bẋ + kx = 0 into
a first order linear system. Let y = ẋ. Then

(
ẋ
ẏ

)
= ( 0 1

−k −b ) ( xy ). The matrix appearing here
is called the companion matrix.

As with 2nd order equations, if you can find two basic solutions u1(t) and u2(t), then
every other solution will be a linear combination of the two. Given initial conditions x(0)
and y(0), you can pick constants c and d so cu1(t) + du2(t) has the initial conditions you’re
after.

So the challenge is to find a couple particular solutions. The easiest to find are ray
solutions, when (x(t), y(t)) just moves along a single line. How can this happen? Suppose
you have a solution on the ray spanned by u1, so it is of the form u(t) = f(t)u1. Then
u′(t) = f ′(t)u1, so we want f ′(t)u1 = f(t)Au1. This is an equality of vectors – for this to
happen, the two vectors have to be in the same direction, and so λ1u1 = Au1 for some value
of λ. That is to say, u1 is an eigenvector of A! Then f ′(t) = λ1f(t), which is solved by eλ1t.

If you can find two distinct real eigenvectors, you get two solutions, and you plug in
the initial conditions and everything is under control. But some matrices have complex
eigenvectors, and cases with repeated or 0 eigenvalues can pose special problems. If you
have two complex conjugate eigenvectors, here’s the plan: pick a complex eigenvalue, find an
eigenvalue λ1 with eigenvector v1 (both of which will be complex). A solution is again eλ1v1.
The real and imaginary parts of this product give two independent solutions. In general,
this will be a product of an exponential and a trig function, like we’ve encountered before.

The other problem is if there’s only one real root. Two things can happen here. If the
matrix is diagonal, then every vector is an eigenvector, and a solution with initial conditions
u(0) = v0 is given by eλtv0. If it’s not diagonal, you can find one eigenvector v, and another
vector with (A − λI)w = v. Your solutions are then c1e

λ1tv + c2e
λ1t(tv + w). This is the

so-called defective case.
That covers all the main cases. There’s another way to think about when these arise.

Since trA = λ1 + λ2 and detA = λ1λ2, in principle you can solve for the eigenvalues given
the trace and determinant. So it should come as no surprise that the relationship between
trace and determinant tells us what sorts of eigenvalues we get. You can plot the two against
each other, and the critical curve is det(A) = tr(A)2/4. If A lies above this curve, it has
two complex eigenvalues. If it lies between det = 0 and det = tr(A)2/4, it has two real
eigenvalues of the same sign. If it lies below the curve, it has two real eigenvalues of opposite
sign.
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The behavior of the solutions to u̇ = Au depends on the types of the eigenvalues of u.
It’s extremely helpful to draw the phase portrait of such a system. This shows the xy-plane,
with curves drawn for a few solutions, illustrating x(t) and y(t) vary as t changes. I’m not
going to include the pictures here, but definitely take a look at supplemental notes 31 to see
what’s going on. The various possibilities

Eigenvalues det/tr type example
λ1 < 0, λ2 > 0 detA < 0 Saddle ( 1 0

0 −1 )
λ1 < 0, λ2 < 0 0 < detA < (trA)2/4, trA < 0 Stable node

( −1 0
0 −2

)
λ1 > 0, λ2 > 0 0 < detA < (trA)2/4, trA > 0 Unstable node ( 1 0

0 2 )
λi = a± bi, a < 0 detA > (trA)2/4, trA < 0 Stable spiral

( −1 1
−1 −1

)
λi = a± bi, a > 0 detA > (trA)2/4, trA > 0 Unstable spiral

λ = ±bi detA > 0, trA = 0 Center ( 1 1
−1 1 )

λ1 = λ2 < 0 detA = (trA)2/4 Stable defective node (not
diagonal)

( −1 1
0 −1

)
Stable star (diagonal)

( −1 0
0 −1

)
λ1 = λ2 > 0 detA = (trA)2/4 Unstable defective node

(not diagonal)
( 1 1

0 1 )

Unstable star (diagonal) ( 1 0
0 1 )

λ1 = 0, λ2 < 0 detA = 0, trA < 0 Stable comb ( 0 0
0 −1 )

λ1 = 0, λ2 < 0 detA = 0, trA < 0 Unstable comb ( 0 0
0 1 )

λ1 = λ2 = 0 detA = trA = 0 Parallel lines (not diagonal) ( 0 1
0 0 )

Constant (diagonal) ( 0 0
0 0 )

Here “stable” means that solutions go to (0, 0) as t goes to infinity, while unstable means
some solution goes to infinity. Stability is determined by the signs of the real parts of the
eigenvalues: an eigenvalue with positive real part indicatives an unstable system.

Note that the eigenvalues alone don’t tell you everything. A star and a defective node
both have a single repeated real eigenvalue. To distinguish these cases, you need to check
whether A is diagonal.

Another important feature that you can’t see from the eigenvalues alone is whether a
spiral will be clockwise or counterclockwise. There’s an easy way to check this: plug in (1, 0)
for u. That gives you u̇ at this point. If it points upwards, the spiral is counterclockwise,
and vice versa.

Make sure you have some idea how to draw these! Here’s the gist for the basic three.
For a saddle, find the eigenvectors v1 and v2. Say v1 has a negative eigenvalue, and v2 a
positive eigenvalue. There is an incoming ray solution along v1 and an outgoing ray solution
along v2. Draw these two ray solutions, and then the other solutions interpolate between
these two. For a node, again find the two eigenvectors. You get either two incoming or two
outgoing ray solutions; draw both of these. Then draw in the other solutions (all incoming,
and becoming closer to the one with the eigenvalue of smaller absolute value). For a spiral,
figure out if it’s going clockwise or counterclockwise, and maybe check the direction at a few
specific points.
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By now we know how to find two solutions to u̇ = Au. If you put two (or n, if your
system has more equations) of them next to each other as the columns of a matrix, you get a
fundamental matrix Φ. A general solution to the differential equation is then c1u1 + c2u2 =
Φc, where c = ( c1c2 ). This isn’t unique – it depends on your choice of solutions. There is
a special one, though, the exponential matrix eAt. It arises when you choose normalized
solutions with u1(0) = (1, 0), u2(0) = (0, 1). If you have another fundamental matrix, you
can use eAt = Φ(t)Φ(0)−1. This gives a nice shortcut: the solution to u̇ = Au with u(0) = u0

is given by u(t) = eAtu0. (This may sound profound, but it is really just a reformulation
in terms of matrices of our usual procedure for finding constants using initial conditions.
Nonetheless it can save you some algebra).

We’re often interested in inhomogeneous systems u̇ = Au +F (t). As in the second-order
case, the general solution is uh + up, where uh is the general solution to the homogeneous
equation u̇ = Au, and up is a single solution to u̇ = Au +F (t). If F (t) = F is constant, you
can just use up = −A−1F .

Many important differential equations aren’t linear, but these methods are also useful in
studying nonlinear autonomous sytems, in which x′ and y′ depend on x and y, but not on
t: x′(t) = F (x, y), y′(t) = G(x, y). You can draw a vector field for the trajectories to help
visualize them. The critical points are where x′ and y′ are both 0. To find them, you can
just solve for when F and G are both 0.

Near an equilibrium, the system is well-approximated by the linear equation u̇ = Ju,

where J =

(
∂F
∂x

∂F
∂y

∂G
∂x

∂G
∂y

)
. So you can study the behavior near the critical points using the linear

approximation and our study of the linear versions. Here are the steps:

1. Find the critical points, by solving for points where ẋ = 0 and ẏ = 0.

2. At each one, compute the Jacobian at that point.

3. Analyze the linear equation u̇ = Ju as above (e.g. figure out how to draw it)

How to interpret this? The linearization gives a good approximation of the phase portrait
if we’re close to the critical point in question. To sketch the full phase portrait, draw in the
spirals, nodes, etc. you found at the critical points – this is where the interesting action is.
Elsewhere, it extrapolates between what’s going on at these critical points. Plugging in a
few values can help you draw the function elsewhere. Once you’ve done this, you should be
able to eyeball the sketch and see the asymptotic behavior of many solutions (e.g. starting
at (1, 0), it will eventually converge to the critical point (2, 2), which is a stable spiral with
angular pseudofrequency. . . ).
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