Math 18.06, r3/5 Problems #11 May 14, 2013

1. Suppose $\lambda_1 = 2$ and $\lambda_2 = 5$ and $x_1 = (1, 1, 1)$ and $x_2 = (1, -2, 1)$. Choose λ_3 and x_3 so that A is symmetric positive semidefinite but not positive definite.

Suppose: A is positive definite symmetric 2. Q is orthogonal (same size as A) B is $Q^T A Q = Q^{-1} A Q$.

Show that: B is also symmetric. B is also positive definite.

- 3. Which of the following are linear transformations? Why or why not?
 - (a) $T : \mathbb{R}^3 \to \mathbb{R}$ defined by $T(\mathbf{v}) = |\mathbf{v}|$
 - (b) $T(\mathbf{v}) = \text{largest component of } \mathbf{v}$
 - (c) T(a, b, c) = (b, c, a).
- 4. Consider the matrix with SVD

$$A = U\Sigma V^T = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}$$

Sketch the image of the square with vertices (0,0), (1,0), (0,1), and (1,1) under A by applying each of the three matrices of the SVD.

- 5. Consider the vector space of functions spanned by $\sin x$, $\cos x$, $\sin 2x$, and $\cos 2x$.
 - (a) Write down the matrices ∂ and \int for differentiation and integration on this space.
 - (b) What are $\partial \int$ and $\int \partial$?
 - (c) How can you find the matrix for taking the second derivative?
 - (d) How would your answer change if we added the function 1 to this basis?
- 6. Suppose that f has period 2π and f(-x) = -f(x) for all x (i.e. x is an odd function). What does this tell you about its Fourier coefficients?
- 7. Why are the eigenvalues of any Hermitian matrix real?
- 8. What class of matrices does P belong to? (invertible, Hermitian, unitary)

$$P = \begin{bmatrix} 0 & i & 0 \\ 0 & 0 & i \\ i & 0 & 0 \end{bmatrix}$$

What are the eigenvalues of P?