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1. Suppose λ1 = 2 and λ2 = 5 and x1 = (1, 1, 1) and x2 = (1,−2, 1). Choose λ3 and x3 so that A is
symmetric positive semidefinite but not positive definite.

If we want A to be symmetric, the third eigenvector x3 had better be orthogonal to the other
two. The quick way to find a vector orthogonal to two given ones in R3 is via cross product:
x3 = x1 × x2 = (3, 0,−3).

Alternately, you can use elimination: x3 should be in the nullspace of

A =

[
1 1 1
1 −2 1

]
You could also just notice the first and last entries match and guess the answer from that. Either
way, x3 should be a multiple of (1, 0,−1).

As for the eigenvalue, to get a matrix that’s positive semidefinite but not positive definite, we
need to use λ3 = 0.

It doesn’t actually ask you to compute A, but here’s one that works:

A =

1 1 1
1 −2 0
1 1 −1

2 0 0
0 5 0
0 0 0

1 1 1
1 −2 0
1 1 −1

−1 =
1

2

 3 −2 3
−2 8 −2
3 −2 3



2.
Suppose: A is positive definite symmetric

Q is orthogonal (same size as A)
B is QTAQ = Q−1AQ.

Show that: B is also symmetric.
B is also positive definite.

First we show that B is symmetric. This means we need to check BT = B. Using what we’re
told,

BT = (QTAQ)T = QTAT (QT )T = QTAQ = B,

Note that in the next-to-last step we used the fact that A itself is symmetric (AT = A).

For positive definiteness, one way is to use the energy test. If x is any nonzero vector, then

xTBx = xT (QTAQ)x = (Qx)TA(Qx) = yTAy,

where y = Qx. We know that y is nonzero, because Q is orthogonal and therefore has no nullspace.

Another approach is via eigenvalues. We know that B = Q−1AQ, so B is similar to A. That
means that they have the same eigenvalues. Since A is positive definite, its eigenvalues are all
positive, so those of B are as well.

A third approach: A is positive definite, so A = RTR for some R with independent columns. Then
B = QTRTRQ = (RQ)T (RQ). RQ is a matrix with independent columns, since Q is orthogonal.
So B is positive definite.



3. Which of the following are linear transformations? Why or why not?

(a) T : R3 → R defined by T (v) = |v|
Not: T ((1, 0, 0) + (−1, 0, 0)) = T (0) = 0, while T ((1, 0, 0)) + T ((−1, 0, 0)) = 1 + 1 = 2.

(b) T (v) = largest component of v

Not: T ((1, 2, 3) + T ((3, 2, 1)) = T ((4, 4, 4)) = 4, while T ((1, 2, 3)) + T ((3, 2, 1)) = 3 + 3 = 6.

(c) T (a, b, c) = (b, c, a).

This one is.

4. Consider the matrix with SVD

A = UΣV T =

(
1 0
0 −1

)(
4 0
0 2

)(√
2
2
−
√
2
2√

2
2

√
2
2

)

Sketch the image of the square with vertices (0, 0), (1, 0), (0, 1), and (1, 1) under A by applying
each of the three matrices of the SVD.

The original square S is black, then, red, yellow, and green for V TS, ΣV TS, and UΣV TS.

5. Consider the vector space of functions spanned by sinx, cosx, sin 2x, and cos 2x.

(a) Write down the matrices ∂ and
∫

for differentiation and integration on this space.



Computing the derivatives and integrals of these five functions, we get

∂ =


0 −1 0 0
1 0 0 0
0 0 0 −2
0 0 2 0

 ,
∫

=


0 −1 0 0
1 0 0 0
0 0 0 −1

2

0 0 1
2

0

 ,

We have ∂
∫

(f) = f and
∫
∂(f) = f .

(b) What are ∂
∫

and
∫
∂?

In this case, both are the identity.

(c) How can you find the matrix for taking the second derivative?

We can square the matrix for D! This gives

D2 =


−1 0 0 0
0 −1 0 0
0 0 −4 0
0 0 0 −4

 .

We could also get this answer by directly computing the second derivative of each of the basis
vectors.

(d) How would your answer change if we added the function 1 to this basis?

Integration would take us out of this space of functions: the integral of the function 1 is x,
which isn’t periodic at all. So we can’t really write down a matrix for integration.

6. Suppose that f has period 2π and f(−x) = −f(x) for all x (i.e. x is an odd function). What does
this tell you about its Fourier coefficients?

Recall the formulas for the coefficients:

ak =
1

π

∫ 2π

0

f(x) cos kx dx

bk =
1

π

∫ 2π

0

f(x) sin kx dx

If f is odd, then f(x) cos kx is odd times even, which is odd. Since f has period 2π, the integral
from 0 to 2π is the same as that from −π to π, which is 0 because the integrand is odd. So all of
the ak’s must be odd in this case.

7. Why are the eigenvalues of any Hermitian matrix real?

We know xHAx is a real number if A is hermitian and x is any vector. Now suppose Ax = λx,
and so xHAx = xHλx = λ(xHx). This gives λ = (xHAx)/(xHx), a quotient of two real numbers.
So λ is real.

8. What class of matrices does P belong to? (invertible, Hermitian, unitary)

P =

0 i 0
0 0 i
i 0 0


What are the eigenvalues of P?

This matrix is invertible, since the determinant is i3 = −i 6= 0. Unitary is the complex analog of
orthogonal – and indeed, it’s clear that for this matrix the columns are orthogonal with respect
to the complex inner product. So this is unitary. It’s not hermitian; remember that means equal
to its own conjugate transpose.


