Math 121 (Lesieutre); §5.3; September 11, 2017

1. What is an exponential function?

It's a function of the form Ca^x , where *a* is a positive real number, and *C* is a nonzero constant. Here's an example: $7 \cdot 2^x$. Or $\frac{355}{113}\pi^x$.

2. Sketch the graphs of the following exponential functions by first making a table of values.

$$f(x) = 2^x$$
, $g(x) = \left(\frac{1}{2}\right)^x$, $h(x) = -2^x$.

Here are the tables of values...

x	2^x	x	$(1/2)^x$	x	-2^x
-3	1/8	-3	8	-3	-1/8
-2	1/4	-2	4	-2	-1/4
-1	1/2	-1	2	-1	-1/2
0	1	0	1	0	-1
1	2	1	1/2	1	-2
2	4	2	1/4	2	-4
3	8	3	1/8	3	-8

... and here are the plots.

 $(1/2)^x$ (aka 2^{-x}):

For comparison, here they are all together:

3. Using transformations of graphs, graph the following function:

$$F(x) = 3 - 2^{x+1}$$

We start with 2^x . That you already know. 2^{x+1} shifts it right by 1. -2^{x+1} flips that over the axis. $(3 - 2^{x+1} \text{ shifts it up by 3. Here it is, step-by-step:}$

 -2^{x+1} :

4. What is e? Two ways to define it:

$e = \lim_{n \to \infty}$	$\left(1+\frac{1}{n}\right)^n$	$e = \sum_{j=0}^{\infty} \frac{1}{j!} = 1 + $	$\frac{1}{1} + \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 3} + \cdots$
n	$\left(1+\frac{1}{n}\right)^n$	n	$\sum_{j=0}^{n} \frac{1}{j!}$
1	2.0000000	0	1.0000000
10	2.5937425	1	2.0000000
100	2.7048138	2	2.5000000
1000	2.7169239	3	2.6666667
10000	2.7181459	4	2.7083333
100000	2.7182682	5	2.7166667
1000000	2.7182805	6	2.7180556
10000000	2.7182817	7	2.7182540
			1

5. e is in many ways a number like π . It's irrational, so we express it using a symbol: however, don't forget that it isn't a variable! We can still graph exponential functions with e as the base.

Here are the graphs of $f(x) = 2^x$, $g(x) = e^x$, and $h(x) = 3^x$. Can you tell which is which?

Sketch the graph of $y = e^{-x}$ on the same axes.

The fastest-growing one (red) is 3^x , and the slowest-growing (blue) is 2^x . *e* is between 2 and 3, so unsurprisingly, the graph comes in somewhere in the middle (it's the green one).

6. How different are exponential and linear growth? Let's check by making a table of values for the following functions:

$$f(x) = 2x + 1,$$
 $g(x) = 3^{x}$

Here are the tables:

x	2x + 1	x	3^x
-5	-9	-5	1/243
-4	-7	-4	1/81
-3	-5	-3	1/27
-2	-3	-2	1/9
-1	-1	-1	1/3
0	1	0	1
1	3	1	3
2	5	2	9
3	7	3	27
4	9	4	81
5	11	5	243

The exponential function grows much much faster than the linear one, when x is a big positive number. For small x, the exponential is very close to 0.

7. Now let's consider some exponential equations, and how to solve them.

$$2^{2x} = 16$$
, $3^{x+4} = \frac{1}{27}$, $8^{-x+14} = 16^x$, $e^{x^2} = e^{3x} \cdot e^{-2}$.

Notice that $2^4 = 16$, so we need to have 2x = 4. That means x = 2. For the next, $3^3 = 27$, so $3^{-3} = \frac{1}{27}$. Our solution will happen when x + 4 = -3, so x = -7. For the third one,

$$8^{-x+14} = 16^{x}$$

$$(2^{3})^{-x+14} = (2^{4})^{x}$$

$$2^{3(-x+14)} = 2^{4x}$$

$$2^{-3x+42} = 2^{4x}$$

$$-3x + 42 = 4x$$

$$7x = 42$$

$$x = 6.$$

At last,

$$e^{x^{2}} = e^{3x} \cdot e^{-2}$$
$$e^{x^{2}} = e^{3x-2}$$
$$x^{2} = 3x - 2$$
$$x^{2} - 3x + 2 = 0$$
$$(x - 2)(x - 1) = 0.$$

So x = 1 or x = 2.