Math 210 (Lesieutre) 12.8: Max/min, continued February 25, 2017

Problem 1. An airline will let you carry on any rectangular bag for which the sum of the dimensions x, y, and z is less than 60. Suppose that you want to bring a bag with the largest possible volume. To find the appropriate x, y, and z, what function should you maximize, and on what region?

Problem 2. Find the maximum and minimum values of the function $f(x,y) = 5 - (x - 1)^2 - (y - 1)^2$ on a triangle with vertices (0,0), (8,0), and (0,4).

Problem 3. Consider the function $f(x, y) = e^{-x^2 - 2y^2}$.

a) Find the maximum and minimum on or inside a square with vertices $(\pm 2, \pm 2)$.

b) Find the maximum of the same function on the unit circle.