Name: _____

Math 310, Lesieutre Quiz #3 September 16, 2015

1. Determine whether the following vectors are linearly independent:

$\begin{bmatrix} 1 \end{bmatrix}$		[1]	[1]
[1]	,	$\lfloor 2 \rfloor$,	$\lfloor 3 \rfloor$

Explain your answer.

These vectors are not linearly independent: it is impossible for 3 vectors in \mathbb{R}^2 (or 4 in $\mathbb{R}^3,...$) to be linearly independent.

The more popular solution was to actually check it. We want to know if there is a nonzero solution to

$$x_1 \begin{bmatrix} 1\\1 \end{bmatrix} + x_2 \begin{bmatrix} 1\\2 \end{bmatrix} + x_3 \begin{bmatrix} 1\\3 \end{bmatrix} = \begin{bmatrix} 0\\0 \end{bmatrix}$$

To figure this out, we need to use row reduction on the corresponding augmented matrix:

[1	1	1	$\left 0 \right $		1	1	1	0] _[1	0	-1	0	
	1	2	3	0	\rightarrow	0	1	2	0		0	1	2	0	

The variable x_3 is free. This means that there are infinitely many solutions, and in particular that there is some nonzero solution. So the vectors are not independent.

2. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the transformation defined by $T(\mathbf{x}) = A\mathbf{x}$, where

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 2 \\ 1 & 3 & 2 \end{pmatrix}.$$

$$\begin{pmatrix} 2 \\ \end{pmatrix}$$

Find a vector \mathbf{x} whose image under T is $\mathbf{b} = \begin{pmatrix} 2 \\ 2 \\ 4 \end{pmatrix}$. Is the number of vectors \mathbf{x} with $T(\mathbf{x}) = \mathbf{b}$ finite

 $or \ infinite?$

We are asking if there are any solutions to $A\mathbf{x} = \mathbf{b}$, and if so, whether there are finitely many or infinitely many. This is again a matter for row reduction:

$$\begin{bmatrix} 1 & 1 & 0 & | & 2 \\ 0 & 2 & 2 & | & 2 \\ 1 & 3 & 2 & | & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 & | & 2 \\ 0 & 2 & 2 & | & 2 \\ 0 & 2 & 2 & | & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 & | & 2 \\ 0 & 2 & 2 & | & 2 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 & | & 2 \\ 0 & 2 & 2 & | & 2 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 & | & 1 \\ 0 & 1 & 1 & | & 1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}.$$

This is rref. The basic variables are x_1 and x_2 , while the variable x_3 is free. If we plug in $x_3 = 0$ (it's a free variable, so we can plug in any value we want and get a solution), we then find $x_1 = 1$ and $x_2 = 1$. So one **x** that does the trick is

$$\mathbf{x} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$$

Since there is a free variable, there are infinitely many solutions.

Problem 3 on back!

3. Let A be the matrix

$$A = \begin{bmatrix} \frac{1}{2} & 0\\ 0 & 2 \end{bmatrix}.$$

Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation defined by $T(\mathbf{x}) = A\mathbf{x}$.

- (a) Plot the vectors $\mathbf{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$ on the left-hand coordinate axes. Done.
- (b) Compute T(u) and T(v), and plot these vectors on the right coordinate axes. We get

$$T(\mathbf{u}) = \begin{pmatrix} \frac{1}{2} & 0\\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1\\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2}\\ 2 \end{pmatrix},$$
$$T(\mathbf{v}) = \begin{pmatrix} \frac{1}{2} & 0\\ 0 & 2 \end{pmatrix} \begin{pmatrix} -2\\ 1 \end{pmatrix} = \begin{pmatrix} -1\\ 2 \end{pmatrix}.$$

(c) Describe in words how T transforms a vector \mathbf{x} .

It stretches the vector vertically by a factor of 2 while squishing it horizontally by a factor of 1/2.

