Math 310, Lesieutre Problem set #13 November 25, 2015

Problems for M 11/16:

6.2.1 Determine whether the following vectors are an orthogonal set:

[-1]		$\lceil 5 \rceil$		[3	3]	
4	,	2	,	-	4	
-3		1		L–	7	

6.2.8 Show that the following vectors are an orthogonal basis for \mathbb{R}^2 , and express **x** as a linear combination of the **u**'s.

$$\mathbf{u}_1 = \begin{bmatrix} 2\\ -3 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 6\\ 4 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} 9\\ -7 \end{bmatrix}$$

6.2.10 Show that the following vectors are an orthogonal basis for \mathbb{R}^3 , and express **x** as a linear combination of the **u**'s.

$$\mathbf{u}_1 = \begin{bmatrix} 3\\-3\\0 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 2\\2\\-1 \end{bmatrix}, \quad \mathbf{u}_3 = \begin{bmatrix} 1\\1\\4 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} 5\\-3\\1 \end{bmatrix}.$$

6.2.12 Compute the orthogonal projection of $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ onto the line through $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$ and the origin.

6.2.13 Let $\mathbf{y} = \begin{bmatrix} 2\\ 3 \end{bmatrix}$ and $\mathbf{u} = \begin{bmatrix} 4\\ -7 \end{bmatrix}$. Write \mathbf{y} as a sum of two orthogonal vectors, one in he span of \mathbf{u} and one orthogonal to \mathbf{u} . (We didn't do one quite like this in lecture; take a look at Example 3 in the book.)

Problems for W 11/20:

6.3.3 Verify that the given vectors are an orthogonal set, and then find the projection of **y** onto $W = \text{span}(\mathbf{u}_1, \mathbf{u}_2)$.

$$\mathbf{y} = \begin{bmatrix} -1\\4\\3 \end{bmatrix}, \quad \mathbf{u}_1 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} -1\\1\\0 \end{bmatrix}$$

6.3.9 Let W be the subspace spanned by \mathbf{u}_1 , \mathbf{u}_2 and \mathbf{u}_3 . Write \mathbf{y} as the sum of a vector in W and a vector orthogonal to W.

$$\mathbf{y} = \begin{bmatrix} 4\\3\\3\\-1 \end{bmatrix}, \quad \mathbf{u}_1 = \begin{bmatrix} 1\\1\\0\\1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} -1\\3\\1\\-2 \end{bmatrix}, \quad \mathbf{u}_3 = \begin{bmatrix} -1\\0\\1\\1 \end{bmatrix},$$

6.3.12 Find the closest point to \mathbf{y} in the subspace spanned by \mathbf{v}_1 and \mathbf{v}_2 .

$$\mathbf{y} = \begin{bmatrix} 3\\-1\\1\\13 \end{bmatrix}, \quad \mathbf{v}_1 = \begin{bmatrix} 1\\-2\\-1\\2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -4\\1\\0\\3 \end{bmatrix}$$

6.3.15 Let

$$\mathbf{y} = \begin{bmatrix} 5\\-9\\5 \end{bmatrix}, \quad \mathbf{u}_1 = \begin{bmatrix} -3\\-5\\1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} -3\\2\\1 \end{bmatrix}$$

Find the distance from \mathbf{y} to the plane in \mathbb{R}^3 spanned by \mathbf{u}_1 and \mathbf{u}_2 . (Hint: what point in that plane is closest to \mathbf{y} ?)

Problems for F 11/22:

6.4.1 The given set is a basis for a subspace W. Use the Gram–Schmidt process to produce an orthogonal basis for W.

$$\begin{bmatrix} 3\\0\\-1 \end{bmatrix}, \begin{bmatrix} 8\\5\\-6 \end{bmatrix}.$$

6.4.9 Find an orthogonal basis for the column space of the matrix

$$A = \begin{bmatrix} 3 & -5 & 1\\ 1 & 1 & 1\\ -1 & 5 & -2\\ 3 & -7 & 8 \end{bmatrix}.$$

6.4.10 Find an orthogonal basis for the column space of the matrix below.

$$A = \begin{bmatrix} -1 & 6 & 6 \\ 3 & -8 & 3 \\ 1 & -2 & 6 \\ 1 & -4 & -3 \end{bmatrix}$$

6.4.13 The columns of Q below were obtained by running Gram–Schmidt orthonormalization on the columns of A. Find an upper-triangular R with A = QR.

$$A = \begin{bmatrix} 5 & 9\\ 1 & 7\\ -3 & -5\\ 1 & 5 \end{bmatrix}, \quad Q = \begin{bmatrix} 5/6 & -1/6\\ 1/6 & 5/6\\ -3/6 & 1/6\\ 1/6 & 3/6 \end{bmatrix}$$