Problems for M 10/5:

3.3.1 Use Cramer’s rule to solve $5x_1 + 7x_2 = 3$, $2x_1 + 4x_2 = 1$.

3.3.7 Determine the values of s for which the system has a unique solution, and describe the solution:

\[
\begin{align*}
6sx_1 + 4x_2 &= 5 \\
9x_1 + 2sx_2 &= -2.
\end{align*}
\]

3.3.11 Find the adjugate of the given matrix and use it to find the inverse:

\[
A = \begin{bmatrix} 0 & -2 & -1 \\ 5 & 0 & 0 \\ -1 & 1 & 1 \end{bmatrix}
\]

(We didn’t define the adjugate in class, though we got close: take a look at page 181.)

3.3.20 Find the area of the parallelogram with vertices $(0, 0)$, $(2, -4)$, $(4, -5)$, and $(2, -1)$.

3.3.29 Find a formula for the area of the triangle whose vertices are 0, $v_1 = (a, b)$, and $v_2 = (c, d)$ in \mathbb{R}^2.

Problems for W 10/7:

4.1.1 Let V be the first quadrant in the xy-plane, that is the set of all vectors (x, y) with $x \geq 0$ and $y \geq 0$. In set notation, this is:

\[
V = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : x \geq 0, y \geq 0 \right\}.
\]

(a) If u and v are in V, is $u + v$ in V?

(b) Find a specific vector u in V and a specific scalar c such that cu is not in V. (This is enough to show that V is not a vector space.)

4.1.3 Let H be the set of points inside and on the unit circle in the xy-plane:

\[
H = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : x^2 + y^2 \leq 1 \right\}.
\]

Find a specific example – two vectors or a vector and a scalar – to show that H is not a subspace of \mathbb{R}^2.
4.1.5 Let \mathbb{P}_2 be the vector space of polynomials of degree at most 2. Is the set of polynomials of the form at^2 a subset of \mathbb{P}_2 (where a is a scalar?)

4.1.7 Let \mathbb{P}_2 be the vector space of polynomials of degree at most 3. Is the set of all polynomials with integers as coefficients a subspace?

Problems for F 10/9:

4.1.11 Let W be the set of all vectors of the form \[
\begin{bmatrix}
5b + 2c \\
b \\
c
\end{bmatrix}.
\] Find vectors u and v such that $W = \text{span}(u, v)$. Why does this show that W is a subspace of \mathbb{R}^n?

4.2.4 Find an explicit description of the nullspace of the following matrix by listing a set of vectors that span the nullspace:
\[
A = \begin{bmatrix}
1 & -6 & 4 & 0 \\
0 & 0 & 2 & 0
\end{bmatrix}
\]

4.2.7 Explain why the following set either is or is not a vector space:
\[
\left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : a + b + c = 2 \right\}
\]

4.2.15 Find a matrix A such that the given set is the column space of A.
\[
\left\{ \begin{bmatrix} 2s + 3t \\ r + s - 2t \\ 4r + s \\ 3r - s - t \end{bmatrix} : r, s, t \text{ are scalars} \right\}.
\]

4.2.17 For what value of k is $\text{Nul}(A)$ a subspace of \mathbb{R}^k? For what value of k is $\text{Col}(A)$ a subspace of \mathbb{R}^k?

\[
A = \begin{bmatrix}
2 & -6 \\
-1 & 3 \\
-4 & 12 \\
3 & -9
\end{bmatrix}.
\]